Вычисление производной Производные высших порядков Дифференциал функции Теорема Ферма Выпуклость и вогнутость графика функции Вычислить определитель

Математика задачи примеры решения

Обратная матрица

Будем называть определителем квадратной матрицы

определитель, составленный из элементов этой матрицы:

.

Определение. Квадратная матрица называется невырожденной (неособенной), если её определитель отличен от нуля, и вырожденной (особенной), если определитель её равен нулю.

Без доказательства примем, что

, то есть определитель произведения квадратных матриц равен произведению определителей этих матриц.

Теорема. Если А – невырожденная матрица, то существует и притом единственная матрица А-1 такая, что

.

Пусть дана невырожденная матрица

с определителем .

Рассмотрим матрицу,составленную из алгебраических дополнений к элементам матрицы А и называемую присоединенной к матрице А. Отметим, что алгебраические дополнения к элементам квадратной матрицы находят так же, как к элементам ее определителя. В присоединенной матрице алгебраические дополнения элементов строки стоят в столбце с таким же номером.

Пример. Найти матрицу, обратную для матрицы

Ранг матрицы Рассмотрим прямоугольную матрицу mхn. Выделим в этой матрице какие-нибудь k строк и k столбцов, 1 £ k £ min (m, n) . Из элементов, стоящих на пересечении выделенных строк и столбцов, составим определитель k-го порядка.

Пример. Найти ранг матрицы

Пример. Вычислить ранг матрицы

Пример. Решить систему уравнений по правилу Крамера:

Пример. Матричным методом решить систему уравнений


Дифференциальное исчисление